Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Allergy Asthma Clin Immunol ; 19(1): 25, 2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2253347

ABSTRACT

The novel coronavirus disease of 2019 (COVID-19) pandemic has severely impacted the training of health care professional students because of concerns of potential asymptomatic transmission to colleagues and vulnerable patients. From May 27th, 2020, to June 23rd 2021; at a time when B.1.1.7 (alpha) and B.1.617.2 (delta) were the dominant circulating variants, PCR testing was conducted on 1,237 nasopharyngeal swabs collected from 454 asymptomatic health care professional students as they returned to their studies from across Canada to Kingston, ON, a low prevalence area during that period for COVID-19. Despite 46.7% of COVID-19 infections occurring in the 18-29 age group in Kingston, severe-acute-respiratory coronavirus-2 was not detected in any of the samples suggesting that negligible asymptomatic infection occurred in this group and that PCR testing in this setting may not be warranted as a screening tool.

2.
Free Radical Biology & Medicine ; 192:4-4, 2022.
Article in English | Academic Search Complete | ID: covidwho-2130845
3.
Redox Biol ; 58: 102508, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2069622

ABSTRACT

RATIONALE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 pneumonia. We hypothesize that SARS-CoV-2 causes alveolar injury and hypoxemia by damaging mitochondria in airway epithelial cells (AEC) and pulmonary artery smooth muscle cells (PASMC), triggering apoptosis and bioenergetic impairment, and impairing hypoxic pulmonary vasoconstriction (HPV), respectively. OBJECTIVES: We examined the effects of: A) human betacoronaviruses, SARS-CoV-2 and HCoV-OC43, and individual SARS-CoV-2 proteins on apoptosis, mitochondrial fission, and bioenergetics in AEC; and B) SARS-CoV-2 proteins and mouse hepatitis virus (MHV-1) infection on HPV. METHODS: We used transcriptomic data to identify temporal changes in mitochondrial-relevant gene ontology (GO) pathways post-SARS-CoV-2 infection. We also transduced AECs with SARS-CoV-2 proteins (M, Nsp7 or Nsp9) and determined effects on mitochondrial permeability transition pore (mPTP) activity, relative membrane potential, apoptosis, mitochondrial fission, and oxygen consumption rates (OCR). In human PASMC, we assessed the effects of SARS-CoV-2 proteins on hypoxic increases in cytosolic calcium, an HPV proxy. In MHV-1 pneumonia, we assessed HPV via cardiac catheterization and apoptosis using the TUNEL assay. RESULTS: SARS-CoV-2 regulated mitochondrial apoptosis, mitochondrial membrane permeabilization and electron transport chain (ETC) GO pathways within 2 hours of infection. SARS-CoV-2 downregulated ETC Complex I and ATP synthase genes, and upregulated apoptosis-inducing genes. SARS-CoV-2 and HCoV-OC43 upregulated and activated dynamin-related protein 1 (Drp1) and increased mitochondrial fission. SARS-CoV-2 and transduced SARS-CoV-2 proteins increased apoptosis inducing factor (AIF) expression and activated caspase 7, resulting in apoptosis. Coronaviruses also reduced OCR, decreased ETC Complex I activity and lowered ATP levels in AEC. M protein transduction also increased mPTP opening. In human PASMC, M and Nsp9 proteins inhibited HPV. In MHV-1 pneumonia, infected AEC displayed apoptosis and HPV was suppressed. BAY K8644, a calcium channel agonist, increased HPV and improved SpO2. CONCLUSIONS: Coronaviruses, including SARS-CoV-2, cause AEC apoptosis, mitochondrial fission, and bioenergetic impairment. SARS-CoV-2 also suppresses HPV by targeting mitochondria. This mitochondriopathy is replicated by transduction with SARS-CoV-2 proteins, indicating a mechanistic role for viral-host mitochondrial protein interactions. Mitochondriopathy is a conserved feature of coronaviral pneumonia that may exacerbate hypoxemia and constitutes a therapeutic target.


Subject(s)
COVID-19 , Papillomavirus Infections , Animals , Mice , Humans , SARS-CoV-2 , Hypoxia/complications , Mitochondrial Permeability Transition Pore , Adenosine Triphosphate
4.
Research Square ; 2022.
Article in English | EuropePMC | ID: covidwho-1786506

ABSTRACT

The novel coronavirus disease of 2019 (COVID-19) pandemic has severely impacted the training of health care professional students because of concerns of potential asymptomatic transmission to colleagues and vulnerable patients. From May 27th, 2020, to June 23rd 2021;at a time when B.1.1.7 (alpha) and B.1.617.2 (delta) were the dominant circulating variants, PCR testing was conducted on 1,237 nasopharyngeal swabs collected from 457 asymptomatic health care professional students as they returned to their studies from across Canada to Kingston, ON, a low prevalence area during that period for COVID-19. Despite 46.7% of COVID-19 infections occurring in the 18–29 age group in Kingston, severe-acute-respiratory coronavirus-2 was not detected in any of the samples suggesting that negligible asymptomatic infection occurred in this group and that PCR testing in this setting may not be warranted as a screening tool.

5.
Healthc Manage Forum ; 33(5): 239-242, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-637631

ABSTRACT

Managing healthcare in the Coronavirus Disease 2019 (COVID-19) era should be guided by ethics, epidemiology, equity, and economics, not emotion. Ethical healthcare policies ensure equitable access to care for patients regardless of whether they have COVID-19 or another disease. Because healthcare resources are limited, a cost per Quality Life Year (QALY) approach to COVID-19 policy should also be considered. Policies that focus solely on mitigating COVID-19 are likely to be ethically or financially unsustainable. A cost/QALY approach could target resources to optimally improve QALYs. For example, most COVID-19 deaths occur in long-term care facilities, and this problem is likely better addressed by a focused long-term care reform than by a society-wide non-pharmacological intervention. Likewise, ramping up elective, non-COVID-19 care in low prevalence regions while expanding testing and case tracking in hot spots could reduce excess mortality from non-COVID-19 diseases and decrease adverse financial impacts while controlling the epidemic. Globally, only ∼0.1% of people have had a COVID-19 infection. Thus, ethical healthcare policy must address the needs of the 99.9%.


Subject(s)
Coronavirus Infections/therapy , Delivery of Health Care/economics , Delivery of Health Care/ethics , Health Equity/economics , Health Equity/ethics , Health Policy/economics , Pneumonia, Viral/therapy , Quality-Adjusted Life Years , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Humans , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL